Cremona's table of elliptic curves

Curve 85680fw1

85680 = 24 · 32 · 5 · 7 · 17



Data for elliptic curve 85680fw1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7- 17- Signs for the Atkin-Lehner involutions
Class 85680fw Isogeny class
Conductor 85680 Conductor
∏ cp 168 Product of Tamagawa factors cp
deg 6451200 Modular degree for the optimal curve
Δ -6.8455740216641E+22 Discriminant
Eigenvalues 2- 3- 5- 7- -4 -2 17-  6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,8771568,7647153379] [a1,a2,a3,a4,a6]
j 6398938035881268740096/5868976356022071915 j-invariant
L 3.0144649122446 L(r)(E,1)/r!
Ω 0.071772975365619 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 21420u1 28560dl1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations