Cremona's table of elliptic curves

Curve 86240f4

86240 = 25 · 5 · 72 · 11



Data for elliptic curve 86240f4

Field Data Notes
Atkin-Lehner 2+ 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 86240f Isogeny class
Conductor 86240 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ 3312995840 = 29 · 5 · 76 · 11 Discriminant
Eigenvalues 2+  0 5+ 7- 11-  2  2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-28763,-1877582] [a1,a2,a3,a4,a6]
Generators [5466:20852:27] Generators of the group modulo torsion
j 43688592648/55 j-invariant
L 5.7938813358369 L(r)(E,1)/r!
Ω 0.36659880263827 Real period
R 7.9022098354011 Regulator
r 1 Rank of the group of rational points
S 4.0000000056115 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 86240t4 1760f3 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations