Cremona's table of elliptic curves

Curve 87360bv1

87360 = 26 · 3 · 5 · 7 · 13



Data for elliptic curve 87360bv1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 13+ Signs for the Atkin-Lehner involutions
Class 87360bv Isogeny class
Conductor 87360 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 81920 Modular degree for the optimal curve
Δ 49134059520 = 214 · 3 · 5 · 7 · 134 Discriminant
Eigenvalues 2+ 3- 5+ 7+  0 13+ -6  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1041,-7665] [a1,a2,a3,a4,a6]
j 7622072656/2998905 j-invariant
L 1.7384756015463 L(r)(E,1)/r!
Ω 0.8692377624454 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 87360en1 10920m1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations