Cremona's table of elliptic curves

Curve 88110bf2

88110 = 2 · 32 · 5 · 11 · 89



Data for elliptic curve 88110bf2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 11+ 89+ Signs for the Atkin-Lehner involutions
Class 88110bf Isogeny class
Conductor 88110 Conductor
∏ cp 192 Product of Tamagawa factors cp
Δ -1.0680715253093E+25 Discriminant
Eigenvalues 2+ 3- 5- -2 11+ -4  2  6 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1710721044,27235225055808] [a1,a2,a3,a4,a6]
Generators [26052:577464:1] Generators of the group modulo torsion
j -759510491350220163891402355009/14651186904105468750000 j-invariant
L 4.3712158927702 L(r)(E,1)/r!
Ω 0.066367776667193 Real period
R 1.3721568264003 Regulator
r 1 Rank of the group of rational points
S 0.9999999995514 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 29370bh2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations