Cremona's table of elliptic curves

Curve 88350cm1

88350 = 2 · 3 · 52 · 19 · 31



Data for elliptic curve 88350cm1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19+ 31+ Signs for the Atkin-Lehner involutions
Class 88350cm Isogeny class
Conductor 88350 Conductor
∏ cp 380 Product of Tamagawa factors cp
deg 802560 Modular degree for the optimal curve
Δ 5862481920000000 = 219 · 35 · 57 · 19 · 31 Discriminant
Eigenvalues 2- 3- 5+  1 -5 -5  4 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,0,-98813,11365617] [a1,a2,a3,a4,a6]
Generators [-158:4879:1] Generators of the group modulo torsion
j 6828828647652361/375198842880 j-invariant
L 11.842931513681 L(r)(E,1)/r!
Ω 0.42000415769856 Real period
R 0.074203096940081 Regulator
r 1 Rank of the group of rational points
S 1.0000000005643 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 17670a1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations