Cremona's table of elliptic curves

Curve 88725f3

88725 = 3 · 52 · 7 · 132



Data for elliptic curve 88725f3

Field Data Notes
Atkin-Lehner 3+ 5+ 7+ 13+ Signs for the Atkin-Lehner involutions
Class 88725f Isogeny class
Conductor 88725 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -4.9464273087102E+20 Discriminant
Eigenvalues  1 3+ 5+ 7+ -4 13+ -6 -8 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-416250,-1075204125] [a1,a2,a3,a4,a6]
Generators [54807966:-1306053945:39304] Generators of the group modulo torsion
j -105756712489/6558605235 j-invariant
L 3.6472696666295 L(r)(E,1)/r!
Ω 0.072838211768565 Real period
R 12.518393752577 Regulator
r 1 Rank of the group of rational points
S 1.0000000016504 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17745w4 6825d4 Quadratic twists by: 5 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations