Cremona's table of elliptic curves

Curve 89232cc1

89232 = 24 · 3 · 11 · 132



Data for elliptic curve 89232cc1

Field Data Notes
Atkin-Lehner 2- 3- 11+ 13+ Signs for the Atkin-Lehner involutions
Class 89232cc Isogeny class
Conductor 89232 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 311040 Modular degree for the optimal curve
Δ -181893341380608 = -1 · 227 · 36 · 11 · 132 Discriminant
Eigenvalues 2- 3- -2  4 11+ 13+ -4 -1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,5456,631892] [a1,a2,a3,a4,a6]
Generators [434:9216:1] Generators of the group modulo torsion
j 25943020727/262766592 j-invariant
L 7.6083476411396 L(r)(E,1)/r!
Ω 0.41838215998483 Real period
R 0.75771511192815 Regulator
r 1 Rank of the group of rational points
S 0.9999999995768 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 11154bb1 89232cp1 Quadratic twists by: -4 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations