Cremona's table of elliptic curves

Curve 89930y1

89930 = 2 · 5 · 17 · 232



Data for elliptic curve 89930y1

Field Data Notes
Atkin-Lehner 2- 5+ 17- 23- Signs for the Atkin-Lehner involutions
Class 89930y Isogeny class
Conductor 89930 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 42577920 Modular degree for the optimal curve
Δ -7.0656778074951E+21 Discriminant
Eigenvalues 2-  1 5+  2 -1 -4 17-  8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4055816561,-99418463463115] [a1,a2,a3,a4,a6]
j -49841557909700385914920801/47729492187500 j-invariant
L 4.8430610060784 L(r)(E,1)/r!
Ω 0.0094591036188622 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 64 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3910l1 Quadratic twists by: -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations