Cremona's table of elliptic curves

Curve 90160a1

90160 = 24 · 5 · 72 · 23



Data for elliptic curve 90160a1

Field Data Notes
Atkin-Lehner 2+ 5+ 7+ 23+ Signs for the Atkin-Lehner involutions
Class 90160a Isogeny class
Conductor 90160 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 228480 Modular degree for the optimal curve
Δ -106072338400000 = -1 · 28 · 55 · 78 · 23 Discriminant
Eigenvalues 2+ -2 5+ 7+  0 -2 -1 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,8804,383004] [a1,a2,a3,a4,a6]
Generators [-18:468:1] Generators of the group modulo torsion
j 51131696/71875 j-invariant
L 3.2783410501789 L(r)(E,1)/r!
Ω 0.40262636887207 Real period
R 4.0711951612222 Regulator
r 1 Rank of the group of rational points
S 1.0000000002178 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 45080q1 90160be1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations