Cremona's table of elliptic curves

Curve 9016j1

9016 = 23 · 72 · 23



Data for elliptic curve 9016j1

Field Data Notes
Atkin-Lehner 2+ 7- 23- Signs for the Atkin-Lehner involutions
Class 9016j Isogeny class
Conductor 9016 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1175040 Modular degree for the optimal curve
Δ -7.0501893148048E+22 Discriminant
Eigenvalues 2+  3  0 7- -6 -1  0  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1196825,12764985443] [a1,a2,a3,a4,a6]
Generators [6664643195931:576601858134953:944076141] Generators of the group modulo torsion
j 100718081964000000/37453512751940327 j-invariant
L 6.9950022743251 L(r)(E,1)/r!
Ω 0.085050567373981 Real period
R 20.56130396981 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 18032h1 72128y1 81144bo1 1288c1 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations