Cremona's table of elliptic curves

Curve 90525a1

90525 = 3 · 52 · 17 · 71



Data for elliptic curve 90525a1

Field Data Notes
Atkin-Lehner 3+ 5+ 17+ 71+ Signs for the Atkin-Lehner involutions
Class 90525a Isogeny class
Conductor 90525 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 281088 Modular degree for the optimal curve
Δ -45085693359375 = -1 · 32 · 512 · 172 · 71 Discriminant
Eigenvalues -1 3+ 5+ -4  4 -4 17+ -4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,7562,203906] [a1,a2,a3,a4,a6]
Generators [-20:222:1] Generators of the group modulo torsion
j 3060624960359/2885484375 j-invariant
L 2.611728843765 L(r)(E,1)/r!
Ω 0.41900262604779 Real period
R 1.5583010058047 Regulator
r 1 Rank of the group of rational points
S 0.99999999592023 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18105k1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations