Cremona's table of elliptic curves

Curve 90675u1

90675 = 32 · 52 · 13 · 31



Data for elliptic curve 90675u1

Field Data Notes
Atkin-Lehner 3- 5+ 13+ 31- Signs for the Atkin-Lehner involutions
Class 90675u Isogeny class
Conductor 90675 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 11197440 Modular degree for the optimal curve
Δ -350118935841796875 = -1 · 315 · 59 · 13 · 312 Discriminant
Eigenvalues  0 3- 5+  1  3 13+ -3  2 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-849089550,-9523100278094] [a1,a2,a3,a4,a6]
Generators [486611083821790280:3328068889990526419319:10403062487] Generators of the group modulo torsion
j -5943423068131740751396864/30737464875 j-invariant
L 6.1319300982528 L(r)(E,1)/r!
Ω 0.013983992585891 Real period
R 27.406023622142 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 30225e1 18135q1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations