Cremona's table of elliptic curves

Curve 9075k4

9075 = 3 · 52 · 112



Data for elliptic curve 9075k4

Field Data Notes
Atkin-Lehner 3- 5+ 11- Signs for the Atkin-Lehner involutions
Class 9075k Isogeny class
Conductor 9075 Conductor
∏ cp 96 Product of Tamagawa factors cp
Δ -161816900678296875 = -1 · 312 · 56 · 117 Discriminant
Eigenvalues  1 3- 5+  4 11- -2 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,1,131524,-6113527] [a1,a2,a3,a4,a6]
Generators [147:3976:1] Generators of the group modulo torsion
j 9090072503/5845851 j-invariant
L 6.8248149740213 L(r)(E,1)/r!
Ω 0.18504314321155 Real period
R 1.536762106657 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 27225bo3 363a4 825b4 Quadratic twists by: -3 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations