Cremona's table of elliptic curves

Curve 90768g1

90768 = 24 · 3 · 31 · 61



Data for elliptic curve 90768g1

Field Data Notes
Atkin-Lehner 2- 3+ 31- 61+ Signs for the Atkin-Lehner involutions
Class 90768g Isogeny class
Conductor 90768 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 96768 Modular degree for the optimal curve
Δ -502568619264 = -1 · 28 · 32 · 312 · 613 Discriminant
Eigenvalues 2- 3+  3 -1  1 -1 -4 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-564,-34308] [a1,a2,a3,a4,a6]
Generators [489:10788:1] Generators of the group modulo torsion
j -77640952912/1963158669 j-invariant
L 6.3972744305247 L(r)(E,1)/r!
Ω 0.40298267877405 Real period
R 3.968703101678 Regulator
r 1 Rank of the group of rational points
S 1.0000000002864 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 22692e1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations