Cremona's table of elliptic curves

Curve 90a3

90 = 2 · 32 · 5



Data for elliptic curve 90a3

Field Data Notes
Atkin-Lehner 2+ 3+ 5- Signs for the Atkin-Lehner involutions
Class 90a Isogeny class
Conductor 90 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ -6298560 = -1 · 26 · 39 · 5 Discriminant
Eigenvalues 2+ 3+ 5-  2  6 -4 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-69,-235] [a1,a2,a3,a4,a6]
j -1860867/320 j-invariant
L 0.81997845705798 L(r)(E,1)/r!
Ω 0.81997845705798 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 720g3 2880c3 90b1 450e3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations