Cremona's table of elliptic curves

Curve 91035bi3

91035 = 32 · 5 · 7 · 172



Data for elliptic curve 91035bi3

Field Data Notes
Atkin-Lehner 3- 5- 7+ 17+ Signs for the Atkin-Lehner involutions
Class 91035bi Isogeny class
Conductor 91035 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -17110718239131405 = -1 · 310 · 5 · 74 · 176 Discriminant
Eigenvalues -1 3- 5- 7+  0 -6 17+ -8 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,45463,5056854] [a1,a2,a3,a4,a6]
Generators [-21:2033:1] Generators of the group modulo torsion
j 590589719/972405 j-invariant
L 2.9838470883777 L(r)(E,1)/r!
Ω 0.26625901259797 Real period
R 2.8016395149398 Regulator
r 1 Rank of the group of rational points
S 1.0000000015967 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 30345b3 315b4 Quadratic twists by: -3 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations