Cremona's table of elliptic curves

Curve 91080br3

91080 = 23 · 32 · 5 · 11 · 23



Data for elliptic curve 91080br3

Field Data Notes
Atkin-Lehner 2- 3- 5+ 11- 23- Signs for the Atkin-Lehner involutions
Class 91080br Isogeny class
Conductor 91080 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -1.6791491308201E+21 Discriminant
Eigenvalues 2- 3- 5+  0 11- -2 -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1747077,1759803878] [a1,a2,a3,a4,a6]
Generators [1358:81466:1] Generators of the group modulo torsion
j 790009595281977116/2249374585825125 j-invariant
L 5.9699798896228 L(r)(E,1)/r!
Ω 0.10514111470636 Real period
R 3.5487900637423 Regulator
r 1 Rank of the group of rational points
S 0.99999999984105 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 30360g3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations