Cremona's table of elliptic curves

Curve 91200bh1

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200bh1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 19- Signs for the Atkin-Lehner involutions
Class 91200bh Isogeny class
Conductor 91200 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 307200 Modular degree for the optimal curve
Δ -359017920000000 = -1 · 212 · 310 · 57 · 19 Discriminant
Eigenvalues 2+ 3+ 5+ -2  4  6  0 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-13033,1080937] [a1,a2,a3,a4,a6]
j -3825694144/5609655 j-invariant
L 1.9346138168717 L(r)(E,1)/r!
Ω 0.4836534809558 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 91200cv1 45600p1 18240bi1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations