Cremona's table of elliptic curves

Curve 91200hv4

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200hv4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19+ Signs for the Atkin-Lehner involutions
Class 91200hv Isogeny class
Conductor 91200 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 600519168000000000 = 218 · 32 · 59 · 194 Discriminant
Eigenvalues 2- 3- 5+  4  4  2 -2 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,-9612033,11466936063] [a1,a2,a3,a4,a6]
Generators [1019396994:-15428878275:456533] Generators of the group modulo torsion
j 23977812996389881/146611125 j-invariant
L 10.830805540596 L(r)(E,1)/r!
Ω 0.25808776491215 Real period
R 10.491397716682 Regulator
r 1 Rank of the group of rational points
S 0.99999999913071 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 91200bl4 22800ch4 18240bt4 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations