Cremona's table of elliptic curves

Curve 91200je2

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200je2

Field Data Notes
Atkin-Lehner 2- 3- 5- 19- Signs for the Atkin-Lehner involutions
Class 91200je Isogeny class
Conductor 91200 Conductor
∏ cp 144 Product of Tamagawa factors cp
Δ 280956495863808000 = 216 · 36 · 53 · 196 Discriminant
Eigenvalues 2- 3- 5-  2 -4 -2  0 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-265313,-46092897] [a1,a2,a3,a4,a6]
Generators [-302:2565:1] Generators of the group modulo torsion
j 252122146858292/34296447249 j-invariant
L 8.1314711537111 L(r)(E,1)/r!
Ω 0.21225429327666 Real period
R 1.0641678662111 Regulator
r 1 Rank of the group of rational points
S 1.0000000015223 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 91200bs2 22800k2 91200hd2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations