Cremona's table of elliptic curves

Curve 91425n1

91425 = 3 · 52 · 23 · 53



Data for elliptic curve 91425n1

Field Data Notes
Atkin-Lehner 3- 5+ 23- 53+ Signs for the Atkin-Lehner involutions
Class 91425n Isogeny class
Conductor 91425 Conductor
∏ cp 112 Product of Tamagawa factors cp
deg 344064 Modular degree for the optimal curve
Δ -253890367734375 = -1 · 37 · 57 · 232 · 532 Discriminant
Eigenvalues -1 3- 5+  0  0  6 -2  8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4463,774792] [a1,a2,a3,a4,a6]
Generators [7:-866:1] Generators of the group modulo torsion
j -629202484009/16248983535 j-invariant
L 5.8751413178193 L(r)(E,1)/r!
Ω 0.46354906619699 Real period
R 0.45265213725444 Regulator
r 1 Rank of the group of rational points
S 1.0000000004768 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18285a1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations