Cremona's table of elliptic curves

Curve 9152n1

9152 = 26 · 11 · 13



Data for elliptic curve 9152n1

Field Data Notes
Atkin-Lehner 2+ 11- 13- Signs for the Atkin-Lehner involutions
Class 9152n Isogeny class
Conductor 9152 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 11520 Modular degree for the optimal curve
Δ -4390729547776 = -1 · 221 · 115 · 13 Discriminant
Eigenvalues 2+ -2  1  1 11- 13-  2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-4225,-147489] [a1,a2,a3,a4,a6]
Generators [395:7744:1] Generators of the group modulo torsion
j -31824875809/16749304 j-invariant
L 3.4630553926274 L(r)(E,1)/r!
Ω 0.28893628489093 Real period
R 0.59927665262511 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9152w1 286e1 82368bf1 100672v1 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations