Cremona's table of elliptic curves

Curve 91575y1

91575 = 32 · 52 · 11 · 37



Data for elliptic curve 91575y1

Field Data Notes
Atkin-Lehner 3- 5+ 11- 37+ Signs for the Atkin-Lehner involutions
Class 91575y Isogeny class
Conductor 91575 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 147456 Modular degree for the optimal curve
Δ -5215482421875 = -1 · 38 · 59 · 11 · 37 Discriminant
Eigenvalues  0 3- 5+ -1 11-  2 -4  4 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-25050,-1529969] [a1,a2,a3,a4,a6]
Generators [3698:74039:8] Generators of the group modulo torsion
j -152615747584/457875 j-invariant
L 5.0115683405483 L(r)(E,1)/r!
Ω 0.18970972599218 Real period
R 6.6042585883072 Regulator
r 1 Rank of the group of rational points
S 0.99999999837799 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 30525a1 18315p1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations