Cremona's table of elliptic curves

Curve 91728ck1

91728 = 24 · 32 · 72 · 13



Data for elliptic curve 91728ck1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 13+ Signs for the Atkin-Lehner involutions
Class 91728ck Isogeny class
Conductor 91728 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 4838400 Modular degree for the optimal curve
Δ -2.0813974978272E+22 Discriminant
Eigenvalues 2- 3+ -1 7-  1 13+  2  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-21328083,-38542114926] [a1,a2,a3,a4,a6]
Generators [1441919731725771:17202145795092882:266716895453] Generators of the group modulo torsion
j -47113735347/913952 j-invariant
L 6.0715544729801 L(r)(E,1)/r!
Ω 0.035085866762715 Real period
R 21.631054870476 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 11466c1 91728ci1 91728ce1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations