Cremona's table of elliptic curves

Curve 9295b1

9295 = 5 · 11 · 132



Data for elliptic curve 9295b1

Field Data Notes
Atkin-Lehner 5+ 11- 13+ Signs for the Atkin-Lehner involutions
Class 9295b Isogeny class
Conductor 9295 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 8064 Modular degree for the optimal curve
Δ -86279210875 = -1 · 53 · 11 · 137 Discriminant
Eigenvalues  0 -2 5+ -2 11- 13+ -3 -5 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-901,17255] [a1,a2,a3,a4,a6]
Generators [17:84:1] [27:115:1] Generators of the group modulo torsion
j -16777216/17875 j-invariant
L 3.4484355659181 L(r)(E,1)/r!
Ω 0.97875745962502 Real period
R 0.88081974037789 Regulator
r 2 Rank of the group of rational points
S 0.99999999999964 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 83655s1 46475e1 102245a1 715a1 Quadratic twists by: -3 5 -11 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations