Cremona's table of elliptic curves

Curve 93456n1

93456 = 24 · 32 · 11 · 59



Data for elliptic curve 93456n1

Field Data Notes
Atkin-Lehner 2+ 3- 11- 59+ Signs for the Atkin-Lehner involutions
Class 93456n Isogeny class
Conductor 93456 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 23040 Modular degree for the optimal curve
Δ -83269296 = -1 · 24 · 36 · 112 · 59 Discriminant
Eigenvalues 2+ 3- -3  1 11- -4  2 -5 Hecke eigenvalues for primes up to 20
Equation [0,0,0,6,439] [a1,a2,a3,a4,a6]
Generators [3:22:1] Generators of the group modulo torsion
j 2048/7139 j-invariant
L 4.0041020103844 L(r)(E,1)/r!
Ω 1.509596573953 Real period
R 1.3262159190843 Regulator
r 1 Rank of the group of rational points
S 0.99999999871164 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 46728e1 10384a1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations