Cremona's table of elliptic curves

Curve 9350h1

9350 = 2 · 52 · 11 · 17



Data for elliptic curve 9350h1

Field Data Notes
Atkin-Lehner 2+ 5- 11+ 17+ Signs for the Atkin-Lehner involutions
Class 9350h Isogeny class
Conductor 9350 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 11520 Modular degree for the optimal curve
Δ -205700000000 = -1 · 28 · 58 · 112 · 17 Discriminant
Eigenvalues 2+ -1 5- -1 11+ -3 17+ -8 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-1700,34000] [a1,a2,a3,a4,a6]
Generators [-40:220:1] [24:76:1] Generators of the group modulo torsion
j -1392225385/526592 j-invariant
L 3.744293927212 L(r)(E,1)/r!
Ω 0.94199214811787 Real period
R 0.33123895412266 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 74800da1 84150hd1 9350x1 102850do1 Quadratic twists by: -4 -3 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations