Cremona's table of elliptic curves

Curve 93600cv1

93600 = 25 · 32 · 52 · 13



Data for elliptic curve 93600cv1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 13- Signs for the Atkin-Lehner involutions
Class 93600cv Isogeny class
Conductor 93600 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 73728 Modular degree for the optimal curve
Δ -219375000000 = -1 · 26 · 33 · 510 · 13 Discriminant
Eigenvalues 2- 3+ 5+ -2  4 13-  4  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,675,-21500] [a1,a2,a3,a4,a6]
Generators [21:44:1] Generators of the group modulo torsion
j 1259712/8125 j-invariant
L 6.8478719649041 L(r)(E,1)/r!
Ω 0.49752588913851 Real period
R 3.4409626273906 Regulator
r 1 Rank of the group of rational points
S 1.0000000003161 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 93600e1 93600f1 18720a1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations