Cremona's table of elliptic curves

Curve 93795d3

93795 = 3 · 5 · 132 · 37



Data for elliptic curve 93795d3

Field Data Notes
Atkin-Lehner 3+ 5+ 13+ 37+ Signs for the Atkin-Lehner involutions
Class 93795d Isogeny class
Conductor 93795 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -5.2319724310798E+20 Discriminant
Eigenvalues  1 3+ 5+ -4  0 13+ -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,1010617,-1028261502] [a1,a2,a3,a4,a6]
Generators [5634:425598:1] Generators of the group modulo torsion
j 23649541482640319/108394022450025 j-invariant
L 1.8714313567185 L(r)(E,1)/r!
Ω 0.083162249403976 Real period
R 2.8129219923423 Regulator
r 1 Rank of the group of rational points
S 0.99999999704485 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7215e4 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations