Cremona's table of elliptic curves

Curve 94302by1

94302 = 2 · 32 · 132 · 31



Data for elliptic curve 94302by1

Field Data Notes
Atkin-Lehner 2- 3- 13+ 31+ Signs for the Atkin-Lehner involutions
Class 94302by Isogeny class
Conductor 94302 Conductor
∏ cp 68 Product of Tamagawa factors cp
deg 308904960 Modular degree for the optimal curve
Δ 5.2110159623711E+29 Discriminant
Eigenvalues 2- 3-  1  5 -2 13+  2 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-27794229287,1783197308369247] [a1,a2,a3,a4,a6]
Generators [43115:25765926:1] Generators of the group modulo torsion
j 3993128379105984704358409/876290405691949056 j-invariant
L 14.115566941517 L(r)(E,1)/r!
Ω 0.028532182273632 Real period
R 7.2753589156894 Regulator
r 1 Rank of the group of rational points
S 1.0000000004744 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 31434c1 94302w1 Quadratic twists by: -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations