Cremona's table of elliptic curves

Curve 95424t1

95424 = 26 · 3 · 7 · 71



Data for elliptic curve 95424t1

Field Data Notes
Atkin-Lehner 2+ 3- 7+ 71- Signs for the Atkin-Lehner involutions
Class 95424t Isogeny class
Conductor 95424 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 322560 Modular degree for the optimal curve
Δ -17808408576 = -1 · 214 · 37 · 7 · 71 Discriminant
Eigenvalues 2+ 3-  1 7+  5 -1  4 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-247345,-47430673] [a1,a2,a3,a4,a6]
Generators [5537:410328:1] Generators of the group modulo torsion
j -102144487949235664/1086939 j-invariant
L 9.6015643542255 L(r)(E,1)/r!
Ω 0.10703939075039 Real period
R 6.4072302727393 Regulator
r 1 Rank of the group of rational points
S 1.0000000007442 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 95424bt1 11928f1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations