Cremona's table of elliptic curves

Curve 95550dn1

95550 = 2 · 3 · 52 · 72 · 13



Data for elliptic curve 95550dn1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7- 13+ Signs for the Atkin-Lehner involutions
Class 95550dn Isogeny class
Conductor 95550 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 5160960 Modular degree for the optimal curve
Δ -3.0458515168973E+20 Discriminant
Eigenvalues 2+ 3- 5+ 7- -1 13+  3  1 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-4563151,-3845042302] [a1,a2,a3,a4,a6]
Generators [1408561:73397948:343] Generators of the group modulo torsion
j -2380771254001/69009408 j-invariant
L 5.7708459358578 L(r)(E,1)/r!
Ω 0.051559837168985 Real period
R 6.9953260218584 Regulator
r 1 Rank of the group of rational points
S 1.0000000009985 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3822z1 95550d1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations