Cremona's table of elliptic curves

Curve 95550ky1

95550 = 2 · 3 · 52 · 72 · 13



Data for elliptic curve 95550ky1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7- 13+ Signs for the Atkin-Lehner involutions
Class 95550ky Isogeny class
Conductor 95550 Conductor
∏ cp 60 Product of Tamagawa factors cp
deg 201600 Modular degree for the optimal curve
Δ -2293200000000 = -1 · 210 · 32 · 58 · 72 · 13 Discriminant
Eigenvalues 2- 3- 5- 7-  5 13+  7 -1 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-2388,85392] [a1,a2,a3,a4,a6]
Generators [-48:324:1] Generators of the group modulo torsion
j -78683185/119808 j-invariant
L 14.788877112095 L(r)(E,1)/r!
Ω 0.73603052415524 Real period
R 0.33487916204887 Regulator
r 1 Rank of the group of rational points
S 1.0000000001221 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 95550bw1 95550hs1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations