Cremona's table of elliptic curves

Curve 95550kz1

95550 = 2 · 3 · 52 · 72 · 13



Data for elliptic curve 95550kz1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7- 13+ Signs for the Atkin-Lehner involutions
Class 95550kz Isogeny class
Conductor 95550 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 305280 Modular degree for the optimal curve
Δ -2523117187500 = -1 · 22 · 3 · 59 · 72 · 133 Discriminant
Eigenvalues 2- 3- 5- 7- -5 13+ -5  2 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-12013,511517] [a1,a2,a3,a4,a6]
Generators [-34:6017:8] Generators of the group modulo torsion
j -2003338253/26364 j-invariant
L 11.81752566572 L(r)(E,1)/r!
Ω 0.81572398290491 Real period
R 3.621790549635 Regulator
r 1 Rank of the group of rational points
S 1.0000000013655 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 95550cw1 95550ht1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations