Cremona's table of elliptic curves

Curve 95680k1

95680 = 26 · 5 · 13 · 23



Data for elliptic curve 95680k1

Field Data Notes
Atkin-Lehner 2+ 5+ 13- 23- Signs for the Atkin-Lehner involutions
Class 95680k Isogeny class
Conductor 95680 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 79872 Modular degree for the optimal curve
Δ -101895372800 = -1 · 220 · 52 · 132 · 23 Discriminant
Eigenvalues 2+  0 5+ -2  0 13-  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,212,-15312] [a1,a2,a3,a4,a6]
Generators [24:60:1] Generators of the group modulo torsion
j 4019679/388700 j-invariant
L 4.5471103363908 L(r)(E,1)/r!
Ω 0.50430384503478 Real period
R 2.2541521179977 Regulator
r 1 Rank of the group of rational points
S 1.0000000032532 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 95680bh1 2990h1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations