Cremona's table of elliptic curves

Curve 96048t1

96048 = 24 · 32 · 23 · 29



Data for elliptic curve 96048t1

Field Data Notes
Atkin-Lehner 2- 3- 23+ 29+ Signs for the Atkin-Lehner involutions
Class 96048t Isogeny class
Conductor 96048 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 221184 Modular degree for the optimal curve
Δ -33268543782912 = -1 · 218 · 38 · 23 · 292 Discriminant
Eigenvalues 2- 3-  0 -4  0 -2 -4 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-10515,-499246] [a1,a2,a3,a4,a6]
Generators [295:4698:1] Generators of the group modulo torsion
j -43059012625/11141568 j-invariant
L 3.4449860354896 L(r)(E,1)/r!
Ω 0.23257743552117 Real period
R 1.8515263759743 Regulator
r 1 Rank of the group of rational points
S 0.99999999561634 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12006h1 32016u1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations