Cremona's table of elliptic curves

Curve 9633j1

9633 = 3 · 132 · 19



Data for elliptic curve 9633j1

Field Data Notes
Atkin-Lehner 3- 13+ 19- Signs for the Atkin-Lehner involutions
Class 9633j Isogeny class
Conductor 9633 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 1440 Modular degree for the optimal curve
Δ -14825187 = -1 · 35 · 132 · 192 Discriminant
Eigenvalues  0 3-  0 -3 -2 13+ -4 19- Hecke eigenvalues for primes up to 20
Equation [0,1,1,-43,-230] [a1,a2,a3,a4,a6]
Generators [20:85:1] Generators of the group modulo torsion
j -53248000/87723 j-invariant
L 3.6823534304445 L(r)(E,1)/r!
Ω 0.88038699954785 Real period
R 0.41826531199753 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 28899h1 9633f1 Quadratic twists by: -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations