Cremona's table of elliptic curves

Curve 96642bd1

96642 = 2 · 32 · 7 · 13 · 59



Data for elliptic curve 96642bd1

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 13+ 59+ Signs for the Atkin-Lehner involutions
Class 96642bd Isogeny class
Conductor 96642 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 330240 Modular degree for the optimal curve
Δ -941143864752 = -1 · 24 · 33 · 75 · 133 · 59 Discriminant
Eigenvalues 2- 3+  0 7+  0 13+ -1  5 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-129680,-17942109] [a1,a2,a3,a4,a6]
j -8932557362888671875/34857180176 j-invariant
L 4.0253294189944 L(r)(E,1)/r!
Ω 0.12579154999662 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 96642c1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations