Cremona's table of elliptic curves

Curve 97110bu1

97110 = 2 · 32 · 5 · 13 · 83



Data for elliptic curve 97110bu1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13+ 83+ Signs for the Atkin-Lehner involutions
Class 97110bu Isogeny class
Conductor 97110 Conductor
∏ cp 544 Product of Tamagawa factors cp
deg 29245440 Modular degree for the optimal curve
Δ -6.0065016296943E+25 Discriminant
Eigenvalues 2- 3- 5+ -2 -4 13+ -2  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,97895767,-6950953623] [a1,a2,a3,a4,a6]
Generators [3143:574428:1] Generators of the group modulo torsion
j 142327207378419565089975479/82393712341486141440000 j-invariant
L 7.4884418445678 L(r)(E,1)/r!
Ω 0.037186927480304 Real period
R 1.4806835632167 Regulator
r 1 Rank of the group of rational points
S 1.0000000018145 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 32370h1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations