Cremona's table of elliptic curves

Curve 97236n1

97236 = 22 · 32 · 37 · 73



Data for elliptic curve 97236n1

Field Data Notes
Atkin-Lehner 2- 3- 37- 73- Signs for the Atkin-Lehner involutions
Class 97236n Isogeny class
Conductor 97236 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 391680 Modular degree for the optimal curve
Δ 28336154568912 = 24 · 38 · 373 · 732 Discriminant
Eigenvalues 2- 3- -2  0  4  0 -6 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-152616,22946749] [a1,a2,a3,a4,a6]
Generators [275:1332:1] Generators of the group modulo torsion
j 33703608487641088/2429368533 j-invariant
L 5.2594838629101 L(r)(E,1)/r!
Ω 0.63221790897976 Real period
R 1.3865166244747 Regulator
r 1 Rank of the group of rational points
S 1.0000000031113 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 32412d1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations