Cremona's table of elliptic curves

Curve 97680g1

97680 = 24 · 3 · 5 · 11 · 37



Data for elliptic curve 97680g1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 11- 37+ Signs for the Atkin-Lehner involutions
Class 97680g Isogeny class
Conductor 97680 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 313344 Modular degree for the optimal curve
Δ 61163923011840 = 28 · 36 · 5 · 116 · 37 Discriminant
Eigenvalues 2+ 3+ 5-  2 11-  6  2 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-43180,-3418688] [a1,a2,a3,a4,a6]
Generators [977:29766:1] Generators of the group modulo torsion
j 34780972302198736/238921574265 j-invariant
L 7.5596236106412 L(r)(E,1)/r!
Ω 0.33132777109359 Real period
R 3.8026914065819 Regulator
r 1 Rank of the group of rational points
S 1.0000000004291 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 48840j1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations