Cremona's table of elliptic curves

Curve 98175bc1

98175 = 3 · 52 · 7 · 11 · 17



Data for elliptic curve 98175bc1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 11- 17+ Signs for the Atkin-Lehner involutions
Class 98175bc Isogeny class
Conductor 98175 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 1142784 Modular degree for the optimal curve
Δ -14322571268526675 = -1 · 312 · 52 · 78 · 11 · 17 Discriminant
Eigenvalues  2 3- 5+ 7+ 11-  4 17+ -6 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-159068,-25141471] [a1,a2,a3,a4,a6]
Generators [8186594:25079261:17576] Generators of the group modulo torsion
j -17804709639190958080/572902850741067 j-invariant
L 17.087982675677 L(r)(E,1)/r!
Ω 0.11930310335908 Real period
R 5.9679862352235 Regulator
r 1 Rank of the group of rational points
S 0.99999999927916 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 98175r1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations