Cremona's table of elliptic curves

Curve 98175bp1

98175 = 3 · 52 · 7 · 11 · 17



Data for elliptic curve 98175bp1

Field Data Notes
Atkin-Lehner 3- 5- 7+ 11+ 17+ Signs for the Atkin-Lehner involutions
Class 98175bp Isogeny class
Conductor 98175 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 49152 Modular degree for the optimal curve
Δ 25034625 = 32 · 53 · 7 · 11 · 172 Discriminant
Eigenvalues -1 3- 5- 7+ 11+  0 17+  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-2323,-43288] [a1,a2,a3,a4,a6]
Generators [107:914:1] Generators of the group modulo torsion
j 11091058936901/200277 j-invariant
L 4.8833357386566 L(r)(E,1)/r!
Ω 0.68768056250817 Real period
R 3.5505843927842 Regulator
r 1 Rank of the group of rational points
S 0.99999999871633 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 98175o1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations