Cremona's table of elliptic curves

Curve 98325bv1

98325 = 32 · 52 · 19 · 23



Data for elliptic curve 98325bv1

Field Data Notes
Atkin-Lehner 3- 5+ 19- 23- Signs for the Atkin-Lehner involutions
Class 98325bv Isogeny class
Conductor 98325 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 69120 Modular degree for the optimal curve
Δ -24888515625 = -1 · 36 · 57 · 19 · 23 Discriminant
Eigenvalues  1 3- 5+  0  5 -5 -3 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-792,-11259] [a1,a2,a3,a4,a6]
j -4826809/2185 j-invariant
L 1.761292128938 L(r)(E,1)/r!
Ω 0.44032306083549 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10925e1 19665z1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations