Cremona's table of elliptic curves

Curve 98532j1

98532 = 22 · 32 · 7 · 17 · 23



Data for elliptic curve 98532j1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 17+ 23- Signs for the Atkin-Lehner involutions
Class 98532j Isogeny class
Conductor 98532 Conductor
∏ cp 108 Product of Tamagawa factors cp
deg 176256 Modular degree for the optimal curve
Δ -8336412580608 = -1 · 28 · 33 · 73 · 172 · 233 Discriminant
Eigenvalues 2- 3+  0 7- -3 -4 17+ -1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-14640,695812] [a1,a2,a3,a4,a6]
Generators [-136:414:1] [-67:1173:1] Generators of the group modulo torsion
j -50204565504000/1206078209 j-invariant
L 11.553556253626 L(r)(E,1)/r!
Ω 0.7349101274834 Real period
R 1.3100872044666 Regulator
r 2 Rank of the group of rational points
S 1.0000000000207 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 98532k2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations