Cremona's table of elliptic curves

Curve 9867i1

9867 = 3 · 11 · 13 · 23



Data for elliptic curve 9867i1

Field Data Notes
Atkin-Lehner 3- 11+ 13- 23+ Signs for the Atkin-Lehner involutions
Class 9867i Isogeny class
Conductor 9867 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 14976 Modular degree for the optimal curve
Δ -3529882751967 = -1 · 36 · 113 · 13 · 234 Discriminant
Eigenvalues  1 3-  0  4 11+ 13-  0 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-4401,143839] [a1,a2,a3,a4,a6]
Generators [-43:525:1] Generators of the group modulo torsion
j -9424014732015625/3529882751967 j-invariant
L 7.0251827962095 L(r)(E,1)/r!
Ω 0.74354069397101 Real period
R 3.14942762074 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 29601l1 108537q1 128271q1 Quadratic twists by: -3 -11 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations