Cremona's table of elliptic curves

Curve 99120bn1

99120 = 24 · 3 · 5 · 7 · 59



Data for elliptic curve 99120bn1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7- 59+ Signs for the Atkin-Lehner involutions
Class 99120bn Isogeny class
Conductor 99120 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 62208 Modular degree for the optimal curve
Δ 1432779600 = 24 · 3 · 52 · 73 · 592 Discriminant
Eigenvalues 2- 3+ 5+ 7- -4  6 -2 -6 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-441,3216] [a1,a2,a3,a4,a6]
Generators [-4:70:1] Generators of the group modulo torsion
j 594160697344/89548725 j-invariant
L 4.7466044281381 L(r)(E,1)/r!
Ω 1.4527218258053 Real period
R 1.0891290067007 Regulator
r 1 Rank of the group of rational points
S 0.99999999803706 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 24780j1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations