Cremona's table of elliptic curves

Curve 99180n1

99180 = 22 · 32 · 5 · 19 · 29



Data for elliptic curve 99180n1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19- 29- Signs for the Atkin-Lehner involutions
Class 99180n Isogeny class
Conductor 99180 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 304128 Modular degree for the optimal curve
Δ 629029314000 = 24 · 39 · 53 · 19 · 292 Discriminant
Eigenvalues 2- 3- 5+  2  0  2  6 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-192288,-32454587] [a1,a2,a3,a4,a6]
Generators [878748973897492712476:-39563693615902561401465:413580214943580608] Generators of the group modulo torsion
j 67411307099324416/53929125 j-invariant
L 7.6872417397678 L(r)(E,1)/r!
Ω 0.22798775911957 Real period
R 33.717782828032 Regulator
r 1 Rank of the group of rational points
S 0.99999999874133 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 33060s1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations