Cremona's table of elliptic curves

Curve 99540a1

99540 = 22 · 32 · 5 · 7 · 79



Data for elliptic curve 99540a1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7+ 79+ Signs for the Atkin-Lehner involutions
Class 99540a Isogeny class
Conductor 99540 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 82944 Modular degree for the optimal curve
Δ -82568430000 = -1 · 24 · 33 · 54 · 72 · 792 Discriminant
Eigenvalues 2- 3+ 5+ 7+ -4  2  4 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,72,-13823] [a1,a2,a3,a4,a6]
Generators [26:75:1] [44:273:1] Generators of the group modulo torsion
j 95551488/191130625 j-invariant
L 10.649857006005 L(r)(E,1)/r!
Ω 0.50209356535904 Real period
R 1.7675750995288 Regulator
r 2 Rank of the group of rational points
S 1.0000000000805 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 99540c1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations