Cremona's table of elliptic curves

Curve 99540d1

99540 = 22 · 32 · 5 · 7 · 79



Data for elliptic curve 99540d1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7- 79- Signs for the Atkin-Lehner involutions
Class 99540d Isogeny class
Conductor 99540 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 115200 Modular degree for the optimal curve
Δ -2407695418800 = -1 · 24 · 39 · 52 · 72 · 792 Discriminant
Eigenvalues 2- 3+ 5- 7-  0 -2  0  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4752,146529] [a1,a2,a3,a4,a6]
Generators [-2:395:1] Generators of the group modulo torsion
j -37682675712/7645225 j-invariant
L 8.3655055846125 L(r)(E,1)/r!
Ω 0.78193206280724 Real period
R 0.89154224465954 Regulator
r 1 Rank of the group of rational points
S 0.99999999847652 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 99540b1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations